
	 1	

RAJA Performance Suite
Summary Version

Tagged version 0.2.3 in GitHub project https://github.com/LLNL/RAJAPerf

Please use the gzipped tarfile at the link named for the release located here:
https://github.com/LLNL/RAJAPerf/releases (v0.2.3)

Note: v0.2.3 contains some minor changes to the output files based on initial feedback from
vendors. There are no other changes to the Suite.

Purpose of Benchmark

The intent of the RAJA Performance Suite is to compare execution performance between
baseline and RAJA variants of various loop kernels. The main goals of the Suite are:

• To	assess	performance	of	executable	code	generated	by	compilers	(including	
different	versions)	to	determine:	which	RAJA	C++	abstractions	present	
optimization	challenges	for	compilers,	which	combinations	of	C++	constructs	
and	parallel	programming	models	(e.g.,	OpenMP)	are	problematic,	etc.	

• To	serve	as	a	source	of	kernels	ready	to	share	with	compiler	teams	when	
performance	issues	are	observed	so	those	issues	can	be	addressed.	

• To	verify	that	resolved	issues	do	not	re-appear	in	newer	compiler	versions.	
• To	monitor	performance	changes	as	RAJA	evolves	and	assess	performance	of	

new	RAJA	features.	

Characteristics of Benchmark

The RAJA Performance Suite contains a collection of loop kernels. Each kernel appears in
RAJA and non-RAJA variants using various parallel programming models, such as OpenMP and
CUDA. The non-RAJA variant of a kernel for each programming model is considered the
“baseline” against which the RAJA variant should be compared. The kernels are drawn from a
variety of sources, including HPC benchmark suites and real applications to cover a wide range
of numerical algorithm patterns. The code is written in ISO standard C++ 11.

The Suite is designed to easily run different performance experiments in a simple, script-driven
manner. In particular, the Suite has various run-time configuration options, controlled via
command line options. These options allow one to: select which kernels and variants to execute,
choose sizes of loop iteration spaces, number of times kernels are run, which reference variant to
use for speedup reports, etc. The Suite can also be compiled with individual variants enabled and

	 2	

disabled, which may be helpful to inspect assembly code to identify issues that result when
different programming models are combined in a single source file.

The README.md file which is visible on the GitHub project page, at the URL provided above,
contains instructions for building, running, and adding kernels and variants to the suite.

Mechanics of Building Benchmark

See the RAJA Perf Suite README.md file which is visible of the RAJA Perf Suite GitHub
project page for instructions on retrieving the code and building the code.

Specifically, instructions for cloning the RAJA Performance Suite repo and building the suite
can be found at https://github.com/LLNL/RAJAPerf - building-the-suite. Note that the ‘scripts’
directory, which use CMake cache files in the ‘host-configs’ directory are useful references for
selecting CMake options and compilers we use on Livermore Computing platforms.

Mechanics of Running Benchmark

After configuring and building the RAJA Performance Suite, the Suite is run by executing the
executable in the build directory. Due to the way our build system is set up currently, we
generate two executables. The executable ./bin/raja-perf.exe contains all CPU and CUDA kernel
variants. The executable ./binraja-perf-nolibs.exe contains all CPU and OpenMP target variants.
This will change in a future release so that there is only one executable generated that contains
all variants.

Passing the ‘–help’ (or ‘-h’) option to the executable will output a summary of all command line
options, which describes how to run the Suite in desired configurations.

When the Suite is run, several output files are generated (mostly comma-separated-value text
files). These files report execution timings for each kernel variant, speedups compared to a
reference variant, kernel output checksums, and FOM (figure of merit). The name of each output
file is descriptive of its contents.

Figure of Merit (FOM) Output Report:

The figure of merit for each kernel is a relative speedup (or slowdown) of the RAJA variant for a
given programming model back-end vs. the baseline kernel variant for that programming model.
In the FOM report, each RAJA variant that is slower than its corresponding baseline for a
particular programming model, by a given tolerance, is marked as “OVER_TOL” in the report in
the column to the right speedup (or slowdown) value for the RAJA variant. The default tolerance
is 10%. The tolerance can be changed via a command line option. Run the executable with the ‘-
h’ option to see how this is done.

	 3	

We would like vendors to report FOM numbers for kernel variants in the Suite associated with
each programming model that is relevant to their architecture, including sequential variants.
FOM should be reported for the default kernels sizes in the Suite, which are chosen to be
representative of real application kernels.

Ideally, we would like each RAJA variant to be no slower than its corresponding baseline
variant. However, issues related to compiler optimizations and as well as internal RAJA
implementations likely makes this impossible at present. Nevertheless, we view this Suite as a
critical communication tool in interactions between DOE Laboratories and compiler vendors.

When certain kernels and variants are reported as ‘OVER_TOL’ according to the tolerance
value, we would like vendors to analyze these cases. Specifically, we are interested in details
about why this happens. For example,

• What	is	the	cause	of	compiler	optimization	issues	that	is	causing	the	RAJA	variant	to	
run	slower?	Is	optimization	hindered	due	to:	

o Choices	made	in	the	compiler	implementation	or	interpretation	of	C++	
language	features?	

o Choices	made	by	the	RAJA	team	in	its	use	of	C++	language	features?	
• Does	the	combination	of	C++	and	a	parallel	programming	model	hinder	

performance?	For	example,	is	this	due	to:	
o Choices	made	in	compiler	implementation	or	interpretation	of	the	

programming	model	standard	(if	applicable;	e.g.,	OpenMP)	or	in	the	way	the	
programming	model	is	designed	to	work?	

o Choices	made	by	the	RAJA	team	in	using	the	programming	model?	
• Etc.	

We are genuinely interested in understanding the root causes of performance differences. Our
goal is to improve RAJA as well as compilers. When there are perceived issues with RAJA, we
would like to learn what vendor analysis reveals. When compiler shortcomings are revealed, we
are interested in estimates of what can be done to improve compiler support for RAJA kernel by
machine acceptance time.

Benchmark Verification:

The checksum report can be used to determine whether all kernel variants have generated correct
results. The checksum for each executed variant is reported as well as the difference between it
and whichever reference version is used. All kernels are set up so that a checksum of zero
indicates that a variant did not execute for some reason. Note that, due to differences in compiler
optimizations, order of operations for parallel variants, etc. the checksum differences are not
expected to be identically zero in all cases. Depending on the kernel variant and how it is run, a
checksum difference of < 10e-6 (most of the time the observed difference is much less than this)
is considered a correct result.

	 4	

Figure of Merit Data on BG/Q

Due to what the RAJA Performance Suite is designed to represent (RAJA usage patterns in
LLNL application codes) and assess (execution timings between RAJA kernel variants and non-
RAJA (baseline) kernel variants), Figure of Merit data on BG/Q is not really relevant moving
forward.

Vendor supported compilers on that architecture do not support all C++ 11 features required to
compile the RAJA Performance Suite. The only viable compile that we have access to for the
BG/Q architecture is the clang compiler that has been ported to it. This is not an IBM-supported
compiler and so it is not clear how well it is optimized for the BG/Q architecture.

